
Java Coding 5
To object or not…

From the beginning…

•History of programming paradigms
• GoTo Programming (spaghetti code!)
• Structured Programming
• Object-Oriented Programming

•Paradigm changes response to
• Need to build ever larger programs
• Correctly
• On time
• On budget

Key Attributes of OOP

•Abstraction, Encapsulation,
Inheritance, Polymorphism

What?

 Ease of reuse
• Speeds implementation

& facilitates maintenance.

• Component-based approach
• Easy to use existing code modules

• Easy to modify code to fit circumstances!

 A natural way to view/model world
• Makes design

quicker, easier & less error-prone.

The world as we see it…

•Look around & what do you see?
•Things (books, chairs, tables, people!)

•Actually, see individual things!
•Ayse, David, my textbook, that chair, Mehmet’s

pencil, etc.

•The world is
•a set of things
• interacting with each other.

Describing the world (1)

•Describe a particular person
• Ayse has long blond hair, green eyes, is 1.63m tall, weighs

56Kg and studies computer engineering. Now lying down
asleep.

• Mehmet studies electronics, has short black hair and
brown eyes. He is 180cm and 75 kilos. Now running to
class!

•Notice how all have specific values of
• name, height, weight, eye colour, state, …

Individual Category

Describing the world (2)

•Describe some particular books

•Your textbooks for example

•What features (properties & functionality)
characterize a book?

•How about cars?

Describing the world (3)

•Type/category determine an
object’s properties & functionality
•Person

• has name, height, weight, can run, sleep, …

•Category gives default properties
• “Ayse is a person with green eyes.”

We infer/assume she has two of them, as well as two legs, arms,
nose, mouth, hair, can speak, run, sleep, etc!

• Can concentrate on “relevant” properties

Category IndividualCategory

Describing the world (4)

•We have categories of categories as well

• living things (animals (elephants, cats, dogs)

• person (student (undergraduate, graduate)

• faculty member(prof, assoc prof, assist prof), admin
staff)

• furniture (living room, kitchen, bedroom)

Category IndividualCategory

Java OOP terminology

•Class - Category
• Properties/states
• Functionality/Services

(examines/alters state)

data

methods

 object - Individual/unique thing
(an instance of a class)

 Particular value for each property/state

 & functionality of all members of class.

Java OOP terminology

•Class - Category
• Properties/states
• Functionality/Services

(examines/alters state)

data

methods

 Class acts as blueprint for creating new objects

 Properties/states correspond to memory

locations having particular values

 Functionality corresponds to the methods that

examine/manipulate the property values

Copyright © 2014 by John Wiley & Sons. All rights reserved. 11

Objects

 Object: an entity in your program that you can

manipulate by calling one or more of its methods.

 Method: consists of a sequence of instructions that

can access the data of an object.

• You do not know what the instructions are

• You do know that the behavior is well defined

 System.out has a println method

• You do not know how it works

• What is important is that it does the work you request of it

Copyright © 2014 by John Wiley & Sons. All rights reserved. 12

Classes

 A class describes a set of objects with the same

behavior.

 Some string objects:

"Hello World"

"Goodbye"

"Mississippi"

 You can invoke the same methods on all strings.

 System.out is a member of the PrintStream class

that writes to the console window.

 You can construct other objects of PrintStream class

that write to different destinations.

 All PrintStream objects have methods println and

print.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 13

Classes

 Objects of the PrintStream class have a completely

different behavior than the objects of the String class.

 Different classes have different responsibilities

• A string knows about the letters that it contains

• A string doesn't know how to send itself to a console window or

file.

 All objects of the Window class share the same behavior.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 14

Constructing Objects

Objects of the Rectangle class describe rectangular

shapes.

The Rectangle class

belongs to the package

java.awt

Copyright © 2014 by John Wiley & Sons. All rights reserved. 15

Constructing Objects

 The Rectangle object is not a rectangular shape.

 It is an object that contains a set of numbers.

• The numbers describe the rectangle

 Each rectangle is described by:

• The x- and y-coordinates of its top-left corner

• Its width

• And its height.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 16

Constructing Objects

 In the computer, a Rectangle object is a block of

memory that holds four numbers.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 17

Constructing Objects

 Use the new operator, followed by a class name and

arguments, to construct new objects.

new Rectangle(5, 10, 20, 30)

 Detail:

• The new operator makes a Rectangle object

• It uses the parameters (in this case, 5, 10, 20, and 30) to initialize

the data of the object

• It returns the object

 The process of creating a new object is called

construction.

 The four values 5, 10, 20, and 30 are called the

construction arguments.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 18

Constructing Objects

 Usually the output of the new operator is stored in a

variable:

Rectangle box = new Rectangle(5, 10, 20, 30);

 Additional constructor:

new Rectangle()

Copyright © 2014 by John Wiley & Sons. All rights reserved. 19

Syntax 2.3 Object Construction

Copyright © 2014 by John Wiley & Sons. All rights reserved. 20

Accessor and Mutator Methods

 Accessor method: does not change the internal data of

the object on which it is invoked.

• Returns information about the object

• Example: length method of the String class

• Example: double width = box.getWidth();

 Mutator method: changes the data of the object

box.translate(15, 25);

• The top-left corner is now at (20, 35).

Copyright © 2014 by John Wiley & Sons. All rights reserved. 21

Instance Variables and Encapsulation

Tally counter

 Simulator statements:

Counter tally = new Counter();

tally.click();

tally.click();

int result = tally.getValue(); // Sets result to 2

 Each counter needs to store a variable that keeps track

of the number of simulated button clicks.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 22

Instance Variables

 Instance variables store the data of an object.

 Instance of a class: an object of the class.

 An instance variable is a storage location present in

each object of the class.

 The class declaration specifies the instance variables:

public class Counter

{

private int value;

…

}

 An object's instance variables store the data required

for executing its methods.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 23

Instance Variables

 An instance variable declaration consists of the

following parts:

• access specifier (private)

• type of variable (such as int)

• name of variable (such as value)

 You should declare all instance variables as private.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 24

Instance Variables

 Each object of a class has its own set of instance

variables.

Figure 10 Instance Variables

Copyright © 2014 by John Wiley & Sons. All rights reserved. 25

Syntax 2.5 Instance Variable Declaration

Copyright © 2014 by John Wiley & Sons. All rights reserved. 26

The Methods of the Counter Class

 The clickmethod advances the counter value by 1:

public void click()

{

value = value + 1;

}

• Affects the value of the instance variable of the object on

which the method is invoked

• The method call concertCounter.click();

o Advances the value variable of the concertCounter object

Copyright © 2014 by John Wiley & Sons. All rights reserved. 27

The Methods of the Counter Class

 The getValuemethod returns the current value:

public int getValue()

{

return value;

}

 The return statement

• Terminates the method call

• Returns a result (the return value) to the method's caller

 Private instance variables can only be accessed by

methods of the same class.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 28

Encapsulation

 Encapsulation is the process of hiding implementation

details and providing methods for data access.

 To encapsulate data:

• Declare instance variables as private and

• Declare public methods that access the variables

 Encapsulation allows a programmer to use a class

without having to know its implementation.

 Information hiding makes it simpler for the

implementor of a class to locate errors and change

implementations.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 29

section_5/Counter.java

1 /**

2 This class models a tally counter.

3 */

4 public class Counter

5 {

6 private int value;

7

8 /**

9 Gets the current value of this counter.

10 @return the current value

11 */

12 public int getValue()

13 {

14 return value;

15 }

16

Continued

code/section_1/Counter.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 30

section_5/Counter.java

17 /**

18 Advances the value of this counter by 1.

19 */

20 public void click()

21 {

22 value = value + 1;

23 }

24

25 /**

26 Resets the value of this counter to 0.

27 */

28 public void reset()

29 {

30 value = 0;

31 }

32 }

code/section_1/Counter.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 31

Specifying the Public Interface of a Class

 In order to implement a class, you first need to know

which methods are required.

 Essential behavior of a bank account:

• deposit money

• withdraw money

• get balance

Copyright © 2014 by John Wiley & Sons. All rights reserved. 32

Specifying the Public Interface of a Class

 We want to support method calls such as the following:

harrysChecking.deposit(2000);

harrysChecking.withdraw(500);

System.out.println(harrysChecking.getBalance());

 Here are the method headers needed for a BankAccount class:

public void deposit(double amount)

public void withdraw(double amount)

public double getBalance()

Copyright © 2014 by John Wiley & Sons. All rights reserved. 33

Specifying the Public Interface of a Class:

Method Declaration

 A method's body consisting of statements that are executed

when the method is called:

public void deposit(double amount)

{

implementation - filled in later
}

 You can fill in the method body so it compiles:

public double getBalance()

{

// TODO: fill in implementation

return 0;

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 34

Specifying the Public Interface of a Class

 BankAccount methods were declared as public.

 public methods can be called by all other methods in

the program.

 Methods can also be declared private

• private methods only be called by other methods in the same

class

• private methods are not part of the public interface

Copyright © 2014 by John Wiley & Sons. All rights reserved. 35

Specifying Constructors

 Initialize objects

 Set the initial data for objects

 Similar to a method with two differences:

• The name of the constructor is always the same as the name of

the class

• Constructors have no return type

Copyright © 2014 by John Wiley & Sons. All rights reserved. 36

Specifying Constructors: BankAccount

 Two constructors

public BankAccount()

public BankAccount(double initialBalance)

 Usage

BankAccount harrysChecking = new BankAccount();

BankAccount momsSavings = new BankAccount(5000);

Copyright © 2014 by John Wiley & Sons. All rights reserved. 37

Specifying Constructors: BankAccount

 The constructor name is always the same as the class

name.

 The compiler can tell them apart because they take

different arguments.

 A constructor that takes no arguments is called a no-

argument constructor.

 BankAccount's no-argument constructor - header and

body:

public BankAccount()

{

constructor body—implementation filled in later

}

 The statements in the constructor body will set the

instance variables of the object.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 38

BankAccount Public Interface

 The constructors and methods of a class go inside the

class declaration:

public class BankAccount

{

// private instance variables--filled in later

// Constructors

public BankAccount()

{

// body--filled in later

}

public BankAccount(double initialBalance)

{

// body--filled in later

} Continue
d

Copyright © 2014 by John Wiley & Sons. All rights reserved. 39

BankAccount Public Interface

// Methods

public void deposit(double amount)

{

// body--filled in later

}

public void withdraw(double amount)

{

// body--filled in later

}

public double getBalance()

{

// body--filled in later

}

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 40

Specifying the Public Interface of a Class

 public constructors and methods of a class form the

public interface of the class.

 These are the operations that any programmer can use.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 41

Syntax 2.6 Class Declaration

Copyright © 2014 by John Wiley & Sons. All rights reserved. 42

Using the Public Interface

 Example: transfer money

// Transfer from one account to another

double transferAmount = 500;

momsSavings.withdraw(transferAmount);

harrysChecking.deposit(transferAmount);

 Example: add interest

double interestRate = 5; // 5 percent interest

double interestAmount =

momsSavings.getBalance() * interestRate / 100;

momsSavings.deposit(interestAmount);

 Programmers use objects of the BankAccount class to

carry out meaningful tasks

• without knowing how the BankAccount objects store their data

• without knowing how the BankAccount methods do their work

Copyright © 2014 by John Wiley & Sons. All rights reserved. 43

Commenting the Public Interface –

Documenting a Method

 Start the comment with a /**.

 Describe the method’s purpose.

 Describe each parameter:

• start with @param

• name of the parameter that holds the argument

• a short explanation of the argument

 Describe the return value:

• start with @return

• describe the return value

 Omit @param tag for methods that have no arguments.

 Omit the @return tag for methods whose return type is

void.

 End with */.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 44

Commenting the Public Interface –

Documenting a Method

 Example:

/** Withdraws money from the bank account.

@param amount the amount to withdraw

*/

public void withdraw(double amount)

{

implementation—filled in later

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 45

Commenting the Public Interface –

Documenting a Method

 Example:

/** Gets the current balance of the bank account.

@return the current balance

*/

public double getBalance()

{

implementation—filled in later

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 46

Commenting the Public Interface –

Documenting a Class

 Place above the class declaration.

 Supply a brief comment explaining the class's purpose.

 Example:

/** A bank account has a balance that can be changed by

deposits and withdrawals.

*/

public class BankAccount

{ . . . }

 Provide documentation comments for:

• every class

• every method

• every parameter variable

• every return value

Copyright © 2014 by John Wiley & Sons. All rights reserved. 47

Method Summary

Figure 11 A Method Summary Generated by javadoc

Copyright © 2014 by John Wiley & Sons. All rights reserved. 48

Method Details

Figure 12 Method Detail Generated by javadoc

Copyright © 2014 by John Wiley & Sons. All rights reserved. 49

Self Check 2.29

How can you use the methods of the public interface

to empty the harrysChecking bank account?

Answer:

harrysChecking.withdraw(harrysChecking.getBalance())

Copyright © 2014 by John Wiley & Sons. All rights reserved. 50

Self Check 2.30

What is wrong with this sequence of statements?

BankAccount harrysChecking = new BankAccount(10000);

System.out.println(harrysChecking.withdraw(500));

Answer: The withdraw method has return type void.

It doesn’t return a value. Use the getBalance

method to obtain the balance after the withdrawal.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 51

Self Check 2.31

Suppose you want a more powerful bank account

abstraction that keeps track of an account number in

addition to the balance. How would you change the

public interface to accommodate this enhancement?

Answer: Add an accountNumber parameter to the

constructors, and add a getAccountNumber

method. There is no need for a setAccountNumber

method – the account number never changes after

construction.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 52

Self Check 2.32

Suppose we enhance the BankAccount class so that each

account has an account number. Supply a documentation

comment for the constructor

public BankAccount(int accountNumber, double initialBalance)

Answer:

/**

Constructs a new bank account with a given initial balance.

@param accountNumber the account number for this account

@param initialBalance the initial balance for this account

*/

Copyright © 2014 by John Wiley & Sons. All rights reserved. 53

Providing the Class Implementation

 The implementation of a class consists of:

• instance variables

• the bodies of constructors

• the bodies of methods.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 54

Providing Instance Variables

 Determine the data that each bank account object

contains.

 What does the object need to remember so that it can

carry out its methods?

 Each bank account object only needs to store the current

balance.

 BankAccount instance variable declaration:

public class BankAccount

{

private double balance;

// Methods and constructors below

. . .

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 55

Providing Constructors

 Constructor's job is to initialize the instance variables of

the object.

 The no-argument constructor sets the balance to zero.

public BankAccount()

{

balance = 0;

}

 The second constructor sets the balance to the value

supplied as the construction argument.

public BankAccount(double initialBalance)

{

balance = initialBalance;

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 56

Providing Constructors - Tracing the

Statement

Steps carried out when the following statement is executed:

BankAccount harrysChecking = new BankAccount(1000);

 Create a new object of type BankAccount.

 Call the second constructor

• because an argument is supplied in the constructor call

 Set the parameter variable initialBalance to 1000.

 Set the balance instance variable of the newly created

object to initialBalance.

 Return an object reference, that is, the memory location

of the object.

 Store that object reference in the harrysChecking

variable.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 57

Providing Constructors - Tracing the

Statement

Figure 13 How a Constructor

Works

Copyright © 2014 by John Wiley & Sons. All rights reserved. 58

Providing Methods

 Is the method an accessor or a mutator

• Mutator method

• Update the instance variables in some way

• Accessor method

• Retrieves or computes a result

 deposit method - a mutator method

• Updates the balance

public void deposit(double amount)

{

balance = balance + amount;

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 59

Providing Methods

 withdraw method - another mutator

public void withdraw(double amount)

{

balance = balance – amount;

}

 getBalance method - an accessor method

• Returns a value

public double getBalance()

{

return balance;

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 60

Table 3 Implementing Classes

Copyright © 2014 by John Wiley & Sons. All rights reserved. 61

section_7/BankAccount.java

1 /**

2 A bank account has a balance that can be changed by

3 deposits and withdrawals.

4 */

5 public class BankAccount

6 {

7 private double balance;

8

9 /**

10 Constructs a bank account with a zero balance.

11 */

12 public BankAccount()

13 {

14 balance = 0;

15 }

16

17 /**

18 Constructs a bank account with a given balance.

19 @param initialBalance the initial balance

20 */

21 public BankAccount(double initialBalance)

22 {

23 balance = initialBalance;

24 }

25 Continue
d

code/section_3/BankAccount.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 62

section_7/BankAccount.java

26 /**

27 Deposits money into the bank account.

28 @param amount the amount to deposit

29 */

30 public void deposit(double amount)

31 {

32 balance = balance + amount;

33 }

34

35 /**

36 Withdraws money from the bank account.

37 @param amount the amount to withdraw

38 */

39 public void withdraw(double amount)

40 {

41 balance = balance - amount;

42 }

43

44 /**

45 Gets the current balance of the bank account.

46 @return the current balance

47 */

48 public double getBalance()

49 {

50 return balance;

51 }

52 }

code/section_3/BankAccount.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 63

Self Check 2.34

Suppose we modify the BankAccount class so that

each bank account has an account number. How does

this change affect the instance variables?

Answer: An instance variable needs to be added to

the class:

private int accountNumber;

Copyright © 2014 by John Wiley & Sons. All rights reserved. 64

Self Check 2.35

Why does the following code not succeed in robbing

mom's bank account?

public class BankRobber

{

public static void main(String[] args)

{

BankAccount momsSavings = new BankAccount(1000);

momsSavings.balance = 0;

}

}

Answer: Because the balance instance variable is

accessed from the main method of BankRobber.

The compiler will report an error because main has

no access to BankAccount instance variables.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 65

Self Check 2.36

The Rectangle class has four instance variables: x, y,

width, and height. Give a possible implementation of

the getWidth method.

Answer:

public int getWidth()

{

return width;

}

Copyright © 2014 by John Wiley & Sons. All rights reserved. 66

Self Check 2.37

Give a possible implementation of the translate

method of the Rectangle class.

Answer: There is more than one correct answer. One

possible implementation is as follows:

public void translate(int dx, int dy)

{

int newx = x + dx;

x = newx;

int newy = y + dy;

y = newy;

}

Another Example: Create & manipulate person
objects

Name: “Güneş”
Age: 18
Salary: 500
Comments:
“Good student”

Name: “David”
Age: 22
Salary: 2000
Comments:
“Teaches CS101”

Person
name,
age,
salary,
comments
sayName,
getNetSalary
getComments
setComments
increaseAge
…

Tasks

• Write the Person class

• In the main method of another “test” class:
• Create k person objects

• Store the created person objects in an array

• Print the contents of all objects in the array in the
following format:

Person 1

Name: xxx

Age: xxx

Salary: xxx

Comments: xxx

Person 2

…

Person
name,
age,
salary,
comments
getName,
getNetSalary
getComments
setComments
increaseAge
…

Hint:

public String toString()

{

return …;

}

Coding Java Classes

// header

public class Person {

// properties

// constructors

// methods

}

public void sayName() {

System.out.println(name);

}

String name;

int age;

double salary;

String comments;

public Person(String theName,

int theAge) {

name = theName;

age = theAge;

comments = “”;

}

Coding Java Classes

public double getNetSalary(int baseRate) {

double tax;

tax = compoundInterest(baseRate);

return salary – tax * 1.10;

}

public String getName() {

return name;

}

public String getComments() {

return comments;

}

public void setComments(String someText) {

comments = someText;

} “get” & “set”
methods for

some properties
(no setName!)

Variables which are
not parameters or
properties must be

defined locally.

public void increaseAge() {

age = age + 1;

}

Simplified Person Class
package myworld;

// Person - simple example only!

// Author: David, CS101

public class Person {

// properties

String name;

int age;

// constructors

public Person(String theName, int

theAge) {

name = theName;

age = theAge;

}

// methods

public void increaseAge() {

age = age + 1;

}

public void sayNameAndAge() {

System.out.println(name + "\t" +

age);

}

}

Declare properties
note private/package access.

Give initial values to
each of the properties

Define (instance) methods
that examine/change properties

Simplified PersonTest

import myworld.Person;

// PersonTest - demo Person class

// Author: David, CS101

public class PersonTest {

public static void main(String[] args) {

// VARIABLES

Person aStudent;

Person friend;

// PROGRAM CODE

aStudent = new Person("Güneş", 18);

friend = new Person("David", 22);

aStudent.sayNameAndAge();

friend.sayNameAndAge();

friend.increaseAge();

aStudent.increaseAge();

friend.increaseAge();

System.out.println();

aStudent.sayNameAndAge();

friend.sayNameAndAge();

}

} // end of class PersonTest

Declare variables
to hold Person objects

Create Person objects
& put them into the variables

Use objects by calling
their methods

Creating & Using Objects

• Always
• Declare variable to “hold” object

• Create object using “new” statement

• Call object’s methods

“Güneş”name:

18age:

0.0salary:

“”

comments:

aStudent

{Person}

Person aStudent;

aStudent =

aStudent.sayName();

Put this in method
of another class,

(e.g main
method)

new Person(“Güneş”, 18);

Creating & Using Objects

Person aStudent;

aStudent = new Person(“Güneş”, 18);

Person friend;

friend = new Person(“David”, 22);

“Güneş”name:

18age:

0.0salary:

“”

comments:

aStudent

{Person}

“David”name:

22age:

0.0salary:

“”

comments:

friend

{Person}

friend.increaseAge();

aStudent.setComments(“Good student”);

23

“Good student”

Other Examples: existing classes

• Random class

Random die;

die = new Random();

int face = die.nextInt(6) + 1;

System.out.println(face);

 StringTokenizer class
StringTokenizer tokens;

tokens = new StringTokenizer(“to be or not to be”);

while (tokens.hasMoreTokens()) {

aWord = tokens.nextToken();

System.out.println(aWord);

}

System.out.println(“done”);

Writing Your Own Classes

•Coins

•Dice

•Traffic lights

•TV

•Video

•Wallet

•Music CD

•Time/Date (in various formats!)

