Java Coding 5

To object or not...

From the beginning...

* History of programming paradigms
* GoTo Programming (spaghetti code!)
e Structured Programming
* Object-Oriented Programming

* Paradigm changes response to
* Need to build ever larger programs
* Correctly
* On time
* On budget

Key Attributes of OOP

* Abstraction, Encapsulation,
Inheritance, Polymorphism o ®
m Ease of reuse

e Speeds implementation
& facilitates maintenance.

e Component-based approach
e Easy to use existing code modules
e Easy to modify code to fit circumstances!

= A natural way to view/model world

e Makes design
quicker, easier & less error-prone.

The world as we see it...

*Look around & what do you see?
* Things (books, chairs, tables, people!)

* Actually, see individual things!

* Ayse, David, my textbook, that chair, Mehmet’s
pencil, etc.

*The world is
* a3 set of things
* interacting with each other.

Describing the world (1)

* Describe a particular person

* Ayse has long blond hair, green eyes, is 1.63m tall, weighs
56Kg and studies computer engineering. Now lying down
asleep.

* Mehmet studies electronics, has short black hair and
brown eyes. He is 180cm and 75 kilos. Now running to
class!

* Notice how all have specific values of

* name, height, weight, eye colour, state, ...

A 4

Individual Category

Describing the world (2)

* Describe some particular books
* Your textbooks for example

* What features (properties & functionality)
characterize a book?

* How about cars?

Describing the world (3)

*Type/category determine an
object’s properties & functionality

* Person
* has name, height, weight, can run, sleep, ...

e Category gives default properties

e “Ayse is a person with green eyes.”
We infer/assume she has two of them, as well as two legs, armes,
nose, mouth, hair, can speak, run, sleep, etc!

e Can concentrate on “relevant” properties

Describing the world (4)

*We have categories of categories as well
* living things (animals (elephants, cats, dogs)
* person (student (undergraduate, graduate)

« faculty member(prof, assoc prof, assist prof), admin
staff)

e furniture (living room, kitchen, bedroom)

Java OOP terminology

* Class - Category

* Properties/states -
* Functionality/Services -

(examines/alters state)

m object - Individual/unique thing
(an instance of a class)

= Particular value for each property/state

= & functionality of all members of class.

Java OOP terminology

*Class - Category
* Properties/states _J data |

* Functionality/Services 4[methods }
(examines/alters state)

m Class acts as blueprint for creating new objects

= Properties/states correspond to memory
ocations having particular values

= Functionality corresponds to the methods that
examine/manipulate the property values

Objects

= Object: an entity in your program that you can
manipulate by calling one or more of its methods.

= Method: consists of a sequence of instructions that
can access the data of an object.
* You do not know what the instructions are
* You do know that the behavior is well defined
= System.out has a println method
* You do not know how it works
« What is important is that it does the work you request of it

Copyright © 2014 by John Wiley & Sons. All rights reserved. 11

Classes

= A class describes a set of objects with the same
behavior.

= Some string objects:
"Hello World"
"Goodbye"
"Mississippi"”

= You can invoke the same methods on all strings.

= System.out is a member of the PrintStream class
that writes to the console window.

= You can construct other objects of PrintStream class
that write to different destinations.

= All PrintStream objects have methods println and
print.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 12

Classes

= QObjects of the PrintStream class have a completely
different behavior than the objects of the String class.

= Different classes have different responsibilities

« A string knows about the letters that it contains

« A string doesn't know how to send itself to a console window or
file.

© Peter Mukherjee/iSiockphow.

= All objects of the Window class share the same behavior.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 13

Constructing Objects

Objects of the Rectangle class describe rectangular

shapes.
D The Rectangle class
belongs to the package

java.awt

Copyright © 2014 by John Wiley & Sons. All rights reserved.

14

Constructing Objects

= The Rectangle object is not a rectangular shape.

= |tis an object that contains a set of numbers.
« The numbers describe the rectangle

= Fach rectangle is described by:

 The x- and y-coordinates of its top-left corner
* [ts width
« And its height.

Copyright © 2014 by John Wiley & Sons. All rights reserved.

15

Constructing Objects

* |n the computer, a Rectangle object is a block of
memory that holds four numbers.

5
1

35 45
30
20 30

0
0

2
30 20 20

Figure 5 Rectangle Objects

Copyright © 2014 by John Wiley & Sons. All rights reserved.

16

Constructing Objects

= Use the new operator, followed by a class name and
arguments, to construct new objects.
new Rectangle(5, 10, 20, 30)

= Detail:

« The new operator makes a Rectangle object

« |t uses the parameters (in this case, 5, 10, 20, and 30) to initialize
the data of the object

« |t returns the object

= The process of creating a new object is called
construction.

= The four values 5, 10, 20, and 30 are called the
construction arguments.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 17

Constructing Objects

= Usually the output of the new operator is stored in a
variable:
Rectangle box = new Rectangle(5, 10, 20, 30);

» Additional constructor:
new Rectangle()

Copyright © 2014 by John Wiley & Sons. All rights reserved.

18

Syntax 2.3 Object Construction

Syntax new ClassName(arguments)

The new expression vields an cbjeet. __ Donstruetion arguments

\ 4 A N

Rectangle box = new Rectangle(5, 10, 20, 30):

Usually, you save -
the construeted objest Systes.out.printin{new Rectangle());
in a variable.
You ean also Supply the parentheses even when
pass a comstructed cbjeet there are no arguments.
P a method.

Copyright © 2014 by John Wiley & Sons. All rights reserved.

19

Accessor and Mutator Methods

= Accessor method: does not change the internal data of
the object on which it is invoked.
« Returns information about the object
« Example: Tength method of the String class
« Example: double width = box.getWidth();

= Mutator method: changes the data of the object
box.translate(15, 25); \
« The top-left corner is now at (20, 35). \\

Figure6 Using the translate Method
to Move a Rectangle

Copyright © 2014 by John Wiley & Sons. All rights reserved. 20

Instance Variables and Encapsulation

Tally counter

= Simulator statements:
Counter tally = new Counter();
tally.click();

tally.click();
int result = tally.getValue(); // Sets result to 2

= Each counter needs to store a variable that keeps track
of the number of simulated button clicks.

Copyright © 2014 by John Wiley & Sons. All rights reserved.

21

Instance Variables

» |nstance variables store the data of an object.

» |nstance of a class: an object of the class.

= An instance variable is a storage location present in
each object of the class.

= The class declaration specifies the instance variables:
public class Counter

{

private int value;

}
= An object’s instance variables store the data required

for executing its methods.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 22

Instance Variables

= An instance variable declaration consists of the

following parts:

« access specifier (private)

« type of variable (such as 1nt)

« name of variable (such as value)

= You should declare all instance variables as private.

Copyright © 2014 by John Wiley & Sons. All rights reserved.

23

Instance Variables

= Each object of a class has its own set of instance
variables.

concertCounter = .
certCounte el Counter
value =
Instance
boardingCounter variables
ardi unter = —
= g e Counter
value =

Figure 10 Instance Variables

Copyright © 2014 by John Wiley & Sons. All rights reserved.

24

Syntax 2.5 Instance Variable Declaration

public class ClassName

{

private typeName vanableName;

public class Counter Each object of this class

{ has a separate copy of
private int value; this instanoe variable.

N\

Type of the variable

Copyright © 2014 by John Wiley & Sons. All rights reserved. 25

The Methods of the Counter Class

» The click method advances the counter value by 1:
public void click()

{

value = value + 1;

}

« Affects the value of the instance variable of the object on
which the method is invoked

e The method call concertCounter.click();
o Advances the value variable of the concertCounter object

Copyright © 2014 by John Wiley & Sons. All rights reserved. 26

The Methods of the Counter Class

= The getValue method returns the current value:

public int getValue()
{

return value;

}

= The return statement
« Terminates the method call
« Returns a result (the return value) to the method's caller

= Private instance variables can only be accessed by
methods of the same class.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 27

Encapsulation

= Encapsulation is the process of hiding implementation
details and providing methods for data access.

= To encapsulate data:
« Declare instance variables as private and
« Declare public methods that access the variables

= Encapsulation allows a programmer to use a class
without having to know its implementation.

* Information hiding makes it simpler for the
implementor of a class to locate errors and change
implementations.

Copyright © 2014 by John Wiley & Sons. All rights reserved.

28

section_5/Counter.java

1 / * %

2 This class models a tally counter.

3 */

4 public class Counter

5

6 private int wvalue;

”

8 / * %

9 Gets the current value of this counter.
10 @return the current value
11 */

12 public int getValue ()
13 {

14 return value;

15 }

16

Copyright © 2014 by John Wiley & Sons. All rights reserved.

Continued

29

code/section_1/Counter.java

section_5/Counter.java

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

/**

Advances the value of this counter by 1.

*/
public void click ()
{

value = value + ;

}

/**

Resets the value of this counter to 0.
*/
public void reset ()

{

value = ;

Copyright © 2014 by John Wiley & Sons. All rights reserved.

30

code/section_1/Counter.java

Specifying the Public Interface of a Class

= |n order to implement a class, you first need to know
which methods are required.

= Essential behavior of a bank account:
« deposit money
« withdraw money
« get balance

Copyright © 2014 by John Wiley & Sons. All rights reserved.

31

Specifying the Public Interface of a Class

= We want to support method calls such as the following:
harrysChecking.deposit(2000);
harrysChecking.withdraw(500) ;
System.out.printinCharrysChecking.getBalance());

= Here are the method headers needed for a BankAccount class:
public void deposit(double amount)
public void withdraw(double amount)
public double getBalance()

Copyright © 2014 by John Wiley & Sons. All rights reserved. 32

Specifying the Public Interface of a Class:
Method Declaration

= A method's body consisting of statements that are executed
when the method is called:

public void deposit(double amount)

{

implementation - filled in later

}
= You can fill in the method body so it compiles:
public double getBalance()

{
// TODO: fi11 in implementation

return 0O;

}

Copyright © 2014 by John Wiley & Sons. All rights reserved.

33

Specifying the Public Interface of a Class

= BankAccount methods were declared as public.

= public methods can be called by all other methods in
the program.

= Methods can also be declared private

- private methods only be called by other methods in the same
class

- private methods are not part of the public interface

Copyright © 2014 by John Wiley & Sons. All rights reserved.

34

Specifying Constructors

= |nitialize objects
= Set the initial data for objects

= Similar to a method with two differences:

« The name of the constructor is always the same as the name of
the class

« Constructors have no return type

Copyright © 2014 by John Wiley & Sons. All rights reserved.

35

Specifying Constructors: BankAccount

= TwoO constructors
public BankAccount()
public BankAccount(double initialBalance)
= Usage
BankAccount harrysChecking = new BankAccount();
BankAccount momsSavings = new BankAccount(5000);

Copyright © 2014 by John Wiley & Sons. All rights reserved. 36

Specifying Constructors: BankAccount

= The constructor name is always the same as the class
name.

= The compiler can tell them apart because they take
different arguments.

= A constructor that takes no arguments is called a no-
argument constructor.

= BankAccount's no-argument constructor - header and
body:
public BankAccount()
{

constructor body—implementation filled in later

}

» The statements in the constructor body will set the
instance variables of the object.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 37

BankAccount Public Interface

= The constructors and methods of a class go inside the
class declaration:

public class BankAccount

{

// private instance variables--filled in later
// Constructors
public BankAccount()

{
// body--filled in later
}
public BankAccount(double initialBalance)
{

// body--filled in later

} Continue
d

Copyright © 2014 by John Wiley & Sons. All rights reserved. 38

BankAccount Public Interface

// Methods
public void deposit(double amount)

{
// body--filled 1in later

}

public void withdraw(double amount)

{
// body--filled in later

}
public double getBalance()

{
// body--filled in later

Copyright © 2014 by John Wiley & Sons. All rights reserved.

39

Specifying the Public Interface of a Class

= public constructors and methods of a class form the
public interface of the class.

= These are the operations that any programmer can use.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 40

Syntax 2.6 Class Declaration

Syntax

accessSpecifier class ClassName

{

;

Public interface

mstance vanables
onstsctors

methods

public class Counter

{
private int value;

public Counter(int InitialValue) { value = imitialValue; }

public void click() { value = value + 1; }
public int getValue() { return value; }

Copyright © 2014 by John Wiley & Sons. All rights reserved.

Private
implementation

41

Using the Public Interface

= Example: transfer money
// Transfer from one account to another
double transferAmount = 500;
momsSavings.withdraw(transferAmount);
harrysChecking.deposit(transferAmount);

= Example: add interest
double i1nterestRate = 5; // 5 percent interest
double i1nterestAmount =
momsSavings.getBalance() * interestRate / 100;
momsSavings.deposit(interestAmount);

= Programmers use objects of the BankAccount class to

carry out meaningful tasks
« without knowing how the BankAccount objects store their data
« without knowing how the BankAccount methods do their work

Copyright © 2014 by John Wiley & Sons. All rights reserved.

42

Commenting the Public Interface -
Documenting a Method

Start the comment with a /**.
Describe the method’s purpose.

Describe each parameter:

« start with @param

« name of the parameter that holds the argument

« a short explanation of the argument

Describe the return value:

« start with @return

« describe the return value

Omit @param tag for methods that have no arguments.

Omit the @return tag for methods whose return type is
void.

End with */.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 43

Commenting the Public Interface -
Documenting a Method

= Example:
/** Withdraws money from the bank account.
@param amount the amount to withdraw
*/
public void withdraw(double amount)

{

implementation—filled in later

}

Copyright © 2014 by John Wiley & Sons. All rights reserved.

44

Commenting the Public Interface -
Documenting a Method

= Example:
/** Gets the current balance of the bank account.
@return the current balance
*/
public double getBalance()
{

implementation—filled in later

}

Copyright © 2014 by John Wiley & Sons. All rights reserved.

45

Commenting the Public Interface -
Documenting a Class

= Place above the class declaration.
= Supply a brief comment explaining the class's purpose.

= Example:
/** A bank account has a balance that can be changed by
deposits and withdrawals.

7':/
public class BankAccount
{. . .}

= Provide documentation comments for:
« every class
« every method
« every parameter variable
* every return value

Copyright © 2014 by John Wiley & Sons. All rights reserved.

46

Method Summary

BankAccount « Firefox

File Edt View History Bookmarks Tools Help

' - <) Ale: S rbyS_codeschD3 fsection_2/index.mml

il Classes BankAccount (double initialBalance)
e s Constructs a bank account with a given balance.

BankAccountT estes

Method Summary

voidideposit{double amount)
Deposits money into the bank account,

double|getBalance()

Gets the curremt balance of the bank accowst,

vord lwi thdraw(double amount)
Withdraws money from the bank account,

Figure 11 A Method Summary Generated by javadoc

Copyright © 2014 by John Wiley & Sons. All rights reserved.

47

Method Details

BankAccount -« Firefox

File Edit View Higtory

L . A ~

Bookmarks Tools Help

| file://ibjS_codeichO3 /section_2/index htmi vi b

All Classes

Method Detail

SankAccountT estes

deposit

public void depositi(doudble amount)

Deposits money into the bank account.

Parameters:
amount - the amount to deposit

Figure 12 Meth

Copyright © 2014 by John Wiley & Sons.

od Detail Generated by javadoc

All rights reserved.

48

Self Check 2.29

How can you use the methods of the public interface
to empty the harrysChecking bank account?

Answer:
harrysChecking.withdraw(harrysChecking.getBalance())

Copyright © 2014 by John Wiley & Sons. All rights reserved. 49

Self Check 2.30

What is wrong with this sequence of statements?
BankAccount harrysChecking = new BankAccount(10000) ;
System.out.printlinCharrysChecking.withdraw(500));

Answer: The withdraw method has return type void.
It doesn’t return a value. Use the getBalance
method to obtain the balance after the withdrawal.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 50

Self Check 2.31

Suppose you want a more powerful bank account
abstraction that keeps track of an account number in
addition to the balance. How would you change the
public interface to accommodate this enhancement?

Answer: Add an accountNumber parameter to the
constructors, and add a getAccountNumber
method. There is no need for a setAccountNumber
method - the account number never changes after
construction.

Copyright © 2014 by John Wiley & Sons. All rights reserved.

51

Self Check 2.32

Suppose we enhance the BankAccount class so that each
account has an account number. Supply a documentation

comment for the constructor
public BankAccount(int accountNumber, double 1nitialBalance)

Answer:

Vs
Constructs a new bank account with a given initial balance.
@param accountNumber the account number for this account
@param initialBalance the initial balance for this account

ala
"

Copyright © 2014 by John Wiley & Sons. All rights reserved. 52

Providing the Class Implementation

= The implementation of a class consists of:
* instance variables
« the bodies of constructors
« the bodies of methods.

Copyright © 2014 by John Wiley & Sons. All rights reserved.

53

Providing Instance Variables

= Determine the data that each bank account object
contains.

= What does the object need to remember so that it can
carry out its methods?

= Each bank account object only needs to store the current
balance.

= BankAccount instance variable declaration:
public class BankAccount

{

private double balance;
// Methods and constructors below

Copyright © 2014 by John Wiley & Sons. All rights reserved.

54

Providing Constructors

= Constructor's job is to initialize the instance variables of
the object.

= The no-argument constructor sets the balance to zero.
public BankAccount()

{

balance = 0;

}

» The second constructor sets the balance to the value
supplied as the construction argument.
public BankAccount(double initialBalance)

{

balance = initialBalance;

Copyright © 2014 by John Wiley & Sons. All rights reserved.

55

Providing Constructors - Tracing the
Statement

Steps carried out when the following statement is executed:
BankAccount harrysChecking = new BankAccount(1000);

= Create a new object of type BankAccount. ©

= Call the second constructor
« because an argument is supplied in the constructor call

= Set the parameter variable initialBalance to 1000.©

= Set the balance instance variable of the newly created
objectto initialBalance. ©

= Return an object reference, that is, the memory location
of the object.

= Store that object reference in the harrysChecking
variable. o

Copyright © 2014 by John Wiley & Sons. All rights reserved. 56

Providing Constructors - Tracing the
Statement

Figure 13 How a Constructor
Works

Copyright © 2014 by John Wiley & Sons. All rights reserved. 57

Providing Methods

= |s the method an accessor or a mutator

« Mutator method
« Update the instance variables in some way

« Accessor method
« Retrieves or computes a result

= deposit method - a mutator method
« Updates the balance
public void deposit(double amount)

{

balance = balance + amount;

Copyright © 2014 by John Wiley & Sons. All rights reserved.

58

Providing Methods

= withdraw method - another mutator
public void withdraw(double amount)

{

balance = balance - amount;

}

= getBalance method - an accessor method
« Returns a value
public double getBalance()

{

return balance;

Copyright © 2014 by John Wiley & Sons. All rights reserved.

59

Table 3 Implementing Classes

Table 3 Implementing Classes

Example Comments

public class BankAccount { . . . } This 1s the start of a class declaration. Instance variables,
methods, and constructors are placed inside the braces.

private double balance; This 1s an instance variable of type double. Instance variables
should be declared as private.

public double getBalance() { . . . } This is a method declaration. The body of the method must
be placed inside the braces.

{ return balance: } This 1s the body of the getBalance method. The return
statement returns a value to the caller of the method.

public void deposit(double amount) { . . . } Thisisamethod with a parameter variable (amount). Because
the method 1s declared as void, it has no return value.

. { balance = balance + amount; } This is the bod}-—* of the deposit method. It does not have a
return statement.

public BankAccount() { . . . } This is a constructor declaration. A constructor has the same
name as the class and no return type.

. { balance = 0; } This is the body of the constructor. A constructor should
initialize the instance variables.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 60

section_7/BankAccount.java

1 / * %

2 A bank account has a balance that can be changed by
3 deposits and withdrawals.

4 */

5 public class BankAccount

6

7 private double balance;

8

9 / * %

10 Constructs a bank account with a zero balance.
11 */

12 public BankAccount ()

13 {

14 balance = 0;

15 }

16

1 '7 / * *

18 Constructs a bank account with a given balance.
19 @param initialBalance the initial balance
20 */
21 public BankAccount (double initialBalance)
22 {
23 balance = initialBalance;
24 }
25

Copyright © 2014 by John Wiley & Sons. All rights reserved.

Continue
d

61

code/section_3/BankAccount.java

section_7/BankAccount.java

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
477
48
49
50
51
52

/ * %
Deposits money into the bank account.
@param amount the amount to deposit
*/
public void deposit (double amount)
{

balance = balance + amount;

}

/**
Withdraws money from the bank account.
@param amount the amount to withdraw

*/
public void withdraw (double amount)
{
balance = balance - amount;
}
/**

Gets the current balance of the bank account.
@return the current balance

*/

public double getBalance ()

{

return balance;

}

}
Copyright © 2014 by John Wiley & Sons. All rights reserved.

62

code/section_3/BankAccount.java

Self Check 2.34

Suppose we modify the BankAccount class so that
each bank account has an account number. How does
this change affect the instance variables?

Answer: An instance variable needs to be added to
the class:

private int accountNumber;

Copyright © 2014 by John Wiley & Sons. All rights reserved.

63

Self Check 2.35

Why does the following code not succeed in robbing
mom's bank account?
public class BankRobber

{
public static void main(String[] args)
{
BankAccount momsSavings = new BankAccount(1000);
momsSavings.balance = 0;
}
}

Answer: Because the balance instance variable is
accessed from the main method of BankRobber.
The compiler will report an error because main has
no access to BankAccount instance variables.

Copyright © 2014 by John Wiley & Sons. All rights reserved.

64

Self Check 2.36

The Rectangle class has four instance variables: x, v,
width, and height. Give a possible implementation of
the getWidth method.

Answer:
public 1nt getWidth()

{

return width;

Copyright © 2014 by John Wiley & Sons. All rights reserved.

65

Self Check 2.37

Give a possible implementation of the translate
method of the Rectangle class.

Answer: There is more than one correct answer. One
possible implementation is as follows:
public void translate(int dx, i1nt dy)

{
int newx = x + dx;
X = newx;
int newy =y + dy;
y = newy,;

Copyright © 2014 by John Wiley & Sons. All rights reserved.

66

Another Example: Create & manipulate person
objects

Hint:

public String toString|()

Tasks {

}

return ..;

* Write the Person class

* In the main method of another “test” class:
* Create k person objects
 Store the created person objects in an array

* Print the contents of all objects in the array in the
following format:

Person 1
Name: xxx
Age: Xxx
Salary: xxx
Comments: xxx

Person 2

Coding Java Classes

Coding Java Classes

Simplified Person Class

Simplified PersonTest

Creating & Using Objects

* Always
* Declare variable to “hold” object
» Create object using “new” statement
 Call object’s methods

aStudent

{Person}

Creating & Using Objects

friend
{Person}

'/'

aStudent
{Person}

Other Examples: existing classes

e Random class

m StringTokenizer class

Writing Your Own Classes

*Coins

*Dice

* Traffic lights

TV

*Video

* Wallet

* Music CD

* Time/Date (in various formats!)

