
Java Coding 5
To object or not…



From the beginning…

•History of programming paradigms
• GoTo Programming (spaghetti code!)
• Structured Programming
• Object-Oriented Programming

•Paradigm changes response to
• Need to build ever larger programs
• Correctly
• On time
• On budget



Key Attributes of OOP

•Abstraction, Encapsulation, 
Inheritance, Polymorphism

What?

 Ease of reuse
• Speeds implementation 

& facilitates maintenance.

• Component-based approach
• Easy to use existing code modules

• Easy to modify code to fit circumstances!

 A natural way to view/model world
• Makes design  

quicker, easier & less error-prone.



The world as we see it…

•Look around & what do you see?
•Things (books, chairs, tables, people!)

•Actually, see individual things!
•Ayse, David, my textbook, that chair, Mehmet’s 

pencil, etc.

•The world is 
•a set of things
• interacting with each other.



Describing the world (1)

•Describe a particular person
• Ayse has long blond hair, green eyes, is 1.63m tall, weighs 

56Kg and studies computer engineering. Now lying down 
asleep.

• Mehmet studies electronics, has short black hair and 
brown eyes. He is 180cm and 75 kilos. Now running to 
class!

•Notice how all have specific values of
• name, height, weight, eye colour, state, …

Individual Category



Describing the world (2)

•Describe some particular books

•Your textbooks for example

•What features (properties & functionality) 
characterize a book?

•How about cars?



Describing the world (3)

•Type/category determine an
object’s properties & functionality
•Person

• has name, height, weight, can run, sleep, …

•Category gives default properties
• “Ayse is a person with green eyes.” 

We infer/assume she has two of them, as well as two legs, arms, 
nose, mouth, hair, can speak, run, sleep, etc!

• Can concentrate on “relevant” properties

Category IndividualCategory



Describing the world (4)

•We have categories of categories as well

• living things (animals (elephants, cats, dogs)

• person (student (undergraduate, graduate)

• faculty member( prof, assoc prof, assist prof), admin 
staff)

• furniture (living room, kitchen, bedroom)

Category IndividualCategory



Java OOP terminology

•Class - Category
• Properties/states
• Functionality/Services

(examines/alters state)

data

methods

 object - Individual/unique thing
(an instance of a class)

 Particular value for each property/state

 & functionality of all members of class.



Java OOP terminology

•Class - Category
• Properties/states
• Functionality/Services

(examines/alters state)

data

methods

 Class acts as blueprint for creating new objects

 Properties/states correspond to memory 

locations having particular values

 Functionality corresponds to the methods that 

examine/manipulate the property values
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Objects

 Object: an entity in your program that you can 

manipulate by calling one or more of its methods.

 Method: consists of a sequence of instructions that 

can access the data of an object.

• You do not know what the instructions are

• You do know that the behavior is well defined 

 System.out has a println method

• You do not know how it works

• What is important is that it does the work you request of it
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Classes

 A class describes a set of objects with the same 

behavior.

 Some string objects: 

"Hello World"

"Goodbye"

"Mississippi" 

 You can invoke the same methods on all strings.

 System.out is a member of the PrintStream class 

that writes to the console window.

 You can construct other objects of PrintStream class 

that write to different destinations.

 All PrintStream objects have methods println and 

print.
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Classes

 Objects of the PrintStream class have a completely 

different behavior than the objects of the String class.

 Different classes have different responsibilities

• A string knows about the letters that it contains

• A string doesn't know how to send itself to a console window or 

file.

 All objects of the Window class share the same behavior.
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Constructing Objects

Objects of the Rectangle class describe rectangular 

shapes. 

The Rectangle class 

belongs to the package 

java.awt
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Constructing Objects

 The Rectangle object is not a rectangular shape.

 It is an object that contains a set of numbers.

• The numbers describe the rectangle

 Each rectangle is described by:

• The x- and y-coordinates of its top-left corner 

• Its width

• And its height.
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Constructing Objects

 In the computer, a Rectangle object is a block of 

memory that holds four numbers.



Copyright © 2014 by John Wiley & Sons.  All rights reserved. 17

Constructing Objects

 Use the new operator, followed by a class name and 

arguments, to construct new objects.

new Rectangle(5, 10, 20, 30) 

 Detail: 

• The new operator makes a Rectangle object 

• It uses the parameters (in this case, 5, 10, 20, and 30) to initialize 

the data of the object 

• It returns the object 

 The process of creating a new object is called 

construction.

 The four values 5, 10, 20, and 30 are called the 

construction arguments. 
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Constructing Objects

 Usually the output of the new operator is stored in a 

variable:

Rectangle box = new Rectangle(5, 10, 20, 30); 

 Additional constructor:

new Rectangle() 
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Syntax 2.3 Object Construction
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Accessor and Mutator Methods

 Accessor method: does not change the internal data of 

the object on which it is invoked.

• Returns information about the object

• Example: length method of the String class

• Example: double width = box.getWidth();

 Mutator method: changes the data of the object

box.translate(15, 25);

• The top-left corner is now at (20, 35).
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Instance Variables and Encapsulation

Tally counter

 Simulator statements:

Counter tally = new Counter();

tally.click();

tally.click();

int result = tally.getValue(); // Sets result to 2

 Each counter needs to store a variable that keeps track 

of the number of simulated button clicks. 
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Instance Variables

 Instance variables store the data of an object.

 Instance of a class: an object of the class.

 An instance variable is a storage location present in 

each object of the class.

 The class declaration specifies the instance variables:

public class Counter

{

private int value;

…

} 

 An object's instance variables store the data required 

for executing its methods.
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Instance Variables

 An instance variable declaration consists of the 

following parts:

• access specifier (private) 

• type of variable (such as int)

• name of variable (such as value)

 You should declare all instance variables as private. 
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Instance Variables

 Each object of a class has its own set of instance 

variables.

Figure 10 Instance Variables
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Syntax 2.5 Instance Variable Declaration
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The Methods of the Counter Class

 The clickmethod advances the counter value by 1:

public void click()

{

value = value + 1;

}

• Affects the value of the instance variable of the object on 

which the method is invoked

• The method call concertCounter.click();

o Advances the value variable of the concertCounter object
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The Methods of the Counter Class

 The getValuemethod returns the current value:

public int getValue()

{

return value;

}

 The return statement

• Terminates the method call

• Returns a result (the return value) to the method's caller

 Private instance variables can only be accessed by 

methods of the same class.
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Encapsulation

 Encapsulation is the process of hiding implementation 

details and providing methods for data access.

 To encapsulate data:

• Declare instance variables as private and

• Declare public methods that access the variables 

 Encapsulation allows a programmer to use a class 

without having to know its implementation.

 Information hiding makes it simpler for the 

implementor of a class to locate errors and change 

implementations. 
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section_5/Counter.java

1  /**

2  This class models a tally counter.

3  */

4  public class Counter

5  {

6  private int value;

7  

8  /**

9  Gets the current value of this counter.

10  @return the current value

11  */

12  public int getValue()

13  {

14  return value;

15  }

16  

Continued

code/section_1/Counter.java
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section_5/Counter.java

17  /**

18  Advances the value of this counter by 1.

19  */

20  public void click() 

21  {

22  value = value + 1;

23  }

24  

25  /**

26  Resets the value of this counter to 0.

27  */

28  public void reset()

29  {

30  value = 0;

31  }

32  }

code/section_1/Counter.java
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Specifying the Public Interface of a Class

 In order to implement a class, you first need to know 

which methods are required.

 Essential behavior of a bank account: 

• deposit money 

• withdraw money 

• get balance 
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Specifying the Public Interface of a Class

 We want to support method calls such as the following:

harrysChecking.deposit(2000);

harrysChecking.withdraw(500);

System.out.println(harrysChecking.getBalance());

 Here are the method headers needed for a BankAccount class: 

public void deposit(double amount)

public void withdraw(double amount)

public double getBalance()
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Specifying the Public Interface of a Class: 

Method Declaration

 A method's body consisting of statements that are executed 

when the method is called:

public void deposit(double amount)

{

implementation - filled in later
} 

 You can fill in the method body so it compiles:

public double getBalance()

{

// TODO: fill in implementation

return 0;

} 
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Specifying the Public Interface of a Class

 BankAccount methods were declared as public.

 public methods can be called by all other methods in 

the program.

 Methods can also be declared private

• private methods only be called by other methods in the same 

class

• private methods are not part of the public interface
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Specifying Constructors

 Initialize objects

 Set the initial data for objects

 Similar to a method with two differences: 

• The name of the constructor is always the same as the name of 

the class

• Constructors have no return type 
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Specifying Constructors: BankAccount

 Two constructors 

public BankAccount()

public BankAccount(double initialBalance) 

 Usage 

BankAccount harrysChecking = new BankAccount();

BankAccount momsSavings = new BankAccount(5000); 
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Specifying Constructors: BankAccount

 The constructor name is always the same as the class 

name.

 The compiler can tell them apart because they take 

different arguments.

 A constructor that takes no arguments is called a no-

argument constructor.

 BankAccount's no-argument constructor - header and 

body:

public BankAccount()

{

constructor body—implementation filled in later

}

 The statements in the constructor body will set the 

instance variables of the object. 
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BankAccount Public Interface 

 The constructors and methods of a class go inside the 

class declaration:

public class BankAccount

{

// private instance variables--filled in later

// Constructors

public BankAccount()

{

// body--filled in later

}

public BankAccount(double initialBalance)

{

// body--filled in later

} Continue
d
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BankAccount Public Interface 

// Methods

public void deposit(double amount)

{

// body--filled in later

}

public void withdraw(double amount)

{

// body--filled in later

}

public double getBalance()

{

// body--filled in later

}

}
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Specifying the Public Interface of a Class

 public constructors and methods of a class form the 

public interface of the class.

 These are the operations that any programmer can use.
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Syntax 2.6 Class Declaration
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Using the Public Interface

 Example: transfer money

// Transfer from one account to another

double transferAmount = 500;

momsSavings.withdraw(transferAmount);

harrysChecking.deposit(transferAmount);

 Example: add interest

double interestRate = 5; // 5 percent interest

double interestAmount =

momsSavings.getBalance() * interestRate / 100;

momsSavings.deposit(interestAmount); 

 Programmers use objects of the BankAccount class to 

carry out meaningful tasks 

• without knowing how the BankAccount objects store their data 

• without knowing how the BankAccount methods do their work
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Commenting the Public Interface –

Documenting a Method

 Start the comment with a /**.

 Describe the method’s purpose.

 Describe each parameter: 

• start with @param

• name of the parameter that holds the argument

• a short explanation of the argument

 Describe the return value: 

• start with @return

• describe the return value

 Omit @param tag for methods that have no arguments.

 Omit the @return tag for methods whose return type is 

void.

 End with */.
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Commenting the Public Interface –

Documenting a Method

 Example:

/** Withdraws money from the bank account.

@param amount the amount to withdraw

*/

public void withdraw(double amount)

{

implementation—filled in later

}



Copyright © 2014 by John Wiley & Sons.  All rights reserved. 45

Commenting the Public Interface –

Documenting a Method

 Example:

/** Gets the current balance of the bank account.

@return the current balance

*/

public double getBalance()

{

implementation—filled in later 

}
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Commenting the Public Interface –

Documenting a Class

 Place above the class declaration.

 Supply a brief comment explaining the class's purpose.

 Example:

/** A bank account has a balance that can be changed by

deposits and withdrawals.

*/

public class BankAccount

{ . . . }

 Provide documentation comments for: 

• every class

• every method

• every parameter variable

• every return value
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Method Summary

Figure 11 A Method Summary Generated by javadoc
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Method Details

Figure 12 Method Detail Generated by javadoc
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Self Check 2.29

How can you use the methods of the public interface 

to empty the harrysChecking bank account?

Answer:

harrysChecking.withdraw(harrysChecking.getBalance()) 
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Self Check 2.30

What is wrong with this sequence of statements?

BankAccount harrysChecking = new BankAccount(10000);

System.out.println(harrysChecking.withdraw(500));

Answer: The withdraw method has return type void. 

It doesn’t return a value. Use the getBalance

method to obtain the balance after the withdrawal. 
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Self Check 2.31

Suppose you want a more powerful bank account 

abstraction that keeps track of an account number in 

addition to the balance. How would you change the 

public interface to accommodate this enhancement?

Answer: Add an accountNumber parameter to the 

constructors, and add a getAccountNumber

method. There is no need for a setAccountNumber

method – the account number never changes after 

construction. 
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Self Check 2.32

Suppose we enhance the BankAccount class so that each 

account has an account number. Supply a documentation 

comment for the constructor

public BankAccount(int accountNumber, double initialBalance)

Answer:

/**

Constructs a new bank account with a given initial balance.

@param accountNumber the account number for this account

@param initialBalance the initial balance for this account

*/ 
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Providing the Class Implementation

 The implementation of a class consists of:

• instance variables

• the bodies of constructors

• the bodies of methods. 
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Providing Instance Variables

 Determine the data that each bank account object 

contains.

 What does the object need to remember so that it can 

carry out its methods?

 Each bank account object only needs to store the current 

balance.

 BankAccount instance variable declaration:

public class BankAccount

{

private double balance;

// Methods and constructors below

. . . 

} 
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Providing Constructors

 Constructor's job is to initialize the instance variables of 

the object.

 The no-argument constructor sets the balance to zero.

public BankAccount()

{

balance = 0;

}

 The second constructor sets the balance to the value 

supplied as the construction argument.

public BankAccount(double initialBalance)

{

balance = initialBalance;

}
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Providing Constructors - Tracing the 

Statement

Steps carried out when the following statement is executed:

BankAccount harrysChecking = new BankAccount(1000);

 Create a new object of type BankAccount. 

 Call the second constructor 

• because an argument is supplied in the constructor call

 Set the parameter variable initialBalance to 1000. 

 Set the balance instance variable of the newly created 

object to initialBalance. 

 Return an object reference, that is, the memory location 

of the object.

 Store that object reference in the harrysChecking

variable. 
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Providing Constructors - Tracing the 

Statement

Figure 13 How a Constructor 

Works
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Providing Methods

 Is the method an accessor or a mutator 

• Mutator method 

• Update the instance variables in some way

• Accessor method 

• Retrieves or computes a result

 deposit method - a mutator method 

• Updates the balance

public void deposit(double amount)

{

balance = balance + amount;

} 
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Providing Methods

 withdraw method - another mutator

public void withdraw(double amount)

{

balance = balance – amount;

}

 getBalance method - an accessor method 

• Returns a value

public double getBalance()

{

return balance;

} 
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Table 3 Implementing Classes



Copyright © 2014 by John Wiley & Sons.  All rights reserved. 61

section_7/BankAccount.java

1  /**

2  A bank account has a balance that can be changed by 

3  deposits and withdrawals.

4  */

5  public class BankAccount

6  {  

7  private double balance;

8  

9  /**

10  Constructs a bank account with a zero balance.

11  */

12  public BankAccount()

13  {   

14  balance = 0;

15  }

16  

17  /**

18  Constructs a bank account with a given balance.

19  @param initialBalance the initial balance

20  */

21  public BankAccount(double initialBalance)

22  {   

23  balance = initialBalance;

24  }

25 Continue
d

code/section_3/BankAccount.java
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section_7/BankAccount.java

26  /**

27  Deposits money into the bank account.

28  @param amount the amount to deposit

29  */

30  public void deposit(double amount)

31  {  

32  balance = balance + amount;

33  }

34  

35  /**

36  Withdraws money from the bank account.

37  @param amount the amount to withdraw

38  */

39  public void withdraw(double amount)

40  {   

41  balance = balance - amount;

42  }

43  

44  /**

45  Gets the current balance of the bank account.

46  @return the current balance

47  */

48  public double getBalance()

49  {   

50  return balance;

51  }

52  }

code/section_3/BankAccount.java
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Self Check 2.34

Suppose we modify the BankAccount class so that 

each bank account has an account number. How does 

this change affect the instance variables?

Answer: An instance variable needs to be added to 

the class:

private int accountNumber; 
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Self Check 2.35

Why does the following code not succeed in robbing 

mom's bank account?

public class BankRobber

{

public static void main(String[] args) 

{

BankAccount momsSavings = new BankAccount(1000);

momsSavings.balance = 0;

}

}

Answer: Because the balance instance variable is 

accessed from the main method of BankRobber. 

The compiler will report an error because main has 

no access to BankAccount instance variables.
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Self Check 2.36

The Rectangle class has four instance variables: x, y, 

width, and height. Give a possible implementation of 

the getWidth method.

Answer:

public int getWidth()

{

return width;

} 
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Self Check 2.37

Give a possible implementation of the translate

method of the Rectangle class.

Answer: There is more than one correct answer. One 

possible implementation is as follows:

public void translate(int dx, int dy)

{

int newx = x + dx;

x = newx;

int newy = y + dy;

y = newy;

} 



Another Example: Create & manipulate person 
objects

Name: “Güneş”
Age: 18
Salary: 500
Comments:
“Good student” 

Name: “David”
Age: 22
Salary: 2000
Comments:
“Teaches CS101” 

Person
name, 
age,
salary, 
comments
sayName,
getNetSalary
getComments
setComments
increaseAge
…



Tasks

• Write the Person class

• In the main method of another “test” class:
• Create k person objects

• Store the created person objects in an array

• Print the contents of all objects in the array in the 
following format:

Person 1

Name: xxx

Age: xxx

Salary: xxx

Comments: xxx

Person 2

…

Person
name, 
age,
salary, 
comments
getName,
getNetSalary
getComments
setComments
increaseAge
…

Hint:

public String toString()

{

return …;

}



Coding Java Classes

// header

public class Person {

// properties

// constructors

// methods

}

public void sayName() { 

System.out.println( name);

}

String name;

int age;

double salary;

String comments;

public Person( String theName,

int theAge ) {

name = theName;

age = theAge;

comments = “”;

}



Coding Java Classes

public double getNetSalary( int baseRate) { 

double tax;

tax = compoundInterest( baseRate); 

return salary – tax * 1.10;

}

public String getName() { 

return name;

}

public String getComments() { 

return comments;

}

public void setComments( String someText) { 

comments = someText;

} “get” & “set” 
methods for 

some properties
(no setName!)

Variables which are 
not parameters or 
properties must be 

defined locally.

public void increaseAge() { 

age = age + 1;

}



Simplified Person Class
package myworld;

// Person - simple example only!

// Author: David, CS101

public class Person {

// properties

String name;

int age;

// constructors

public Person( String theName, int 

theAge) {

name = theName;

age = theAge;

}

// methods

public void increaseAge() {

age = age + 1;

}

public void sayNameAndAge() {

System.out.println( name + "\t" + 

age );

}

}

Declare properties
note private/package access.

Give initial values to 
each of the properties

Define (instance) methods 
that examine/change properties



Simplified PersonTest

import myworld.Person;

// PersonTest - demo Person class

// Author: David, CS101

public class PersonTest {

public static void main( String[] args) {

// VARIABLES

Person aStudent;

Person friend;

// PROGRAM CODE

aStudent = new Person( "Güneş", 18);

friend = new Person( "David", 22);

aStudent.sayNameAndAge();

friend.sayNameAndAge();

friend.increaseAge();

aStudent.increaseAge();

friend.increaseAge();

System.out.println();

aStudent.sayNameAndAge();

friend.sayNameAndAge();

}

} // end of class PersonTest

Declare variables 
to hold Person objects

Create Person objects
& put them into the variables

Use objects by calling 
their methods



Creating & Using Objects

• Always
• Declare variable to “hold” object

• Create object using “new” statement

• Call object’s methods

“Güneş”name:

18age:

0.0salary:

“”

comments:

aStudent

{Person}

Person aStudent;

aStudent =

aStudent.sayName();

Put this in method 
of another class, 

(e.g main 
method)

new Person( “Güneş”, 18);



Creating & Using Objects

Person aStudent;

aStudent = new Person( “Güneş”, 18);

Person friend;

friend = new Person( “David”, 22);

“Güneş”name:

18age:

0.0salary:

“”

comments:

aStudent

{Person}

“David”name:

22age:

0.0salary:

“”

comments:

friend

{Person}

friend.increaseAge();

aStudent.setComments( “Good student”);

23

“Good student”



Other Examples: existing classes

• Random class

Random die;

die = new Random();

int face = die.nextInt(6) + 1;

System.out.println( face);

 StringTokenizer class
StringTokenizer tokens;

tokens = new StringTokenizer( “to be or not to be”);

while ( tokens.hasMoreTokens() ) {

aWord = tokens.nextToken();

System.out.println( aWord);

}

System.out.println( “done”);



Writing Your Own Classes

•Coins

•Dice

•Traffic lights

•TV

•Video

•Wallet

•Music CD

•Time/Date (in various formats!)


